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ABSTRACT 

The purpose of this thesis is to validate a finite element model of the small 

satellite NPSAT1. A modal test of this satellite will be conducted and the results 

will be correlated to the FEM simulation results. Furthermore, this thesis provides 

an overview of modal parameter extraction techniques and the theories behind 

them. Impact testing is chosen to obtain the data. In the end, the FEM is found to 

be inaccurate and suggestions are presented for improvements. 
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NOTATION 
 

 
[…]   matrix 

{…}   vector 

[…]T   transpose of matrix 

[…]H   Hermitian (transpose complex conjugate) of matrix 

[…]*   complex conjugate of matrix 

!!"!  modal constant 

!!"(!) individual frequency response function element between 
coordinates j and k (response at j due to excitation at k) 

ℎ!"(!) individual impulse response function element between 
coordinates j and k (response at j due to excitation at k) 

i   −1 

m   number of included modes 

N   total number of modes 

!!" !  dynamic compliance or receptance 

! viscous damping 

! structural damping 

! mode shape 

! frequency of vibration in Hz 

!! natural frequency of rth mode 
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I. INTRODUCTION 

This thesis presents the results of a modal test and analysis of the 

engineering development unit (EDU) of the NPSAT1 satellite. Furthermore, a 

finite element model is examined and correlated to the test-results. In addition, 

we will explore the theory of several parameter extraction techniques. 

NPSAT1 is a 82 kg (180 lbs) small satellite hosting a number of 

experiments. It is a 12-sided cylinder with solar panels mounted on the body. In 

addition to the top and bottom deck it holds two internal equipment decks. 

Experiments include two provided by the Naval Research Laboratory, in 

particular the coherent electromagnetic radio tomography (CERTO) and a 

Langmuir probe. Other experiments include “a lithium-ion battery, a solar cell 

measurement system (SMS) experiment, a configurable fault-tolerant processor 

(CFTP) experiment, two commercial, ‘off-the-shelf’ (COTS)-based experiments, a 

three-axis micro-electromechanical system (MEMS) rate sensor, and a color 

digital camera called the visible wavelength imager (VISIM).” [1]. These are NPS-

built experiments. For launching NPSAT1 will be attached to the evolved 

expendable launch vehicle (EELV) secondary payload adapter (ESPA). The 

modal test will be executed on an engineering development unit (EDU) that 

replicates the mass distribution of the actual flight unit. Figure 1 shows an 

exploded view of the flight unit. 

After the acquisition of the modal parameters the mode shapes are 

correlated with the preliminary run finite element model simulation in order to 

validate it or give suggestions for improvements.  
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Figure 1: Expanded View of NPSAT1 
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II. THEORY OF MODAL ANALYSIS 

This chapter describes the complex process of analyzing the data 

acquired from modal testing. We will illuminate several different procedures to 

extract modal parameters from that data and present some useful tools 

developed for this purpose. Furthermore, we will examine the role of correlating 

test results with simulated results more closely. It is understood that this 

theoretical chapter only accounts for methods used in the experimental section. 

This chapter does not present a complete theoretical overview of all possible 

methods used in modal analysis today. 

 

A. BASIC CHECK OF DATA 

Although preliminary checking of data represents just a crude procedure, it 

can be considered a crucial step in modal analysis. The goal of preliminary 

checking the data is simply to ensure the acquired FRFs are good enough to be 

analyzed. This prevents wasting time and effort on data that subsequently turns 

out to be bad data. 

1. Low-frequency asymptotes 

A simple way to ascertain that the intended boundary conditions have 

been achieved is to have a close look at the low-frequency behavior of the FRF. 

Using a log-log plot of the FRF, we take a look at the very low frequencies below 

the first resonance, because this region correlates to the support conditions 

chosen for the test.  

In case of a grounded structure, we should see a stiffness-like 

characteristic, which means that the FRF approaches a stiffness line 

asymptotically at the lowest frequencies. The magnitude should correspond to 

that of the static stiffness of the structure. 
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Conversely, in case of a freely supported structure, we should see a 

mass-like behavior. However, in practice, there will generally be some rigid body 

modes in case of a freely supported structure, interrupting the mass-like trend. 

Deviations from this behavior may stem from data not extending far 

enough into the lower frequencies or from the intended support conditions not 

having been achieved necessitating the test-setup to be revised. 

2. Mode Indicator Functions (MIFs) 

With the increase of automation, mode indicator functions have been 

developed in order to identify natural frequencies more easily, especially in case 

of multiple references. In general, test data consist of an n x p Matrix with n being 

the number of measurement degrees of freedom (DOFs) and p being the number 

of excitation or reference DOFs. Usually, n will be a relatively large number and p 

will be 3 or 4. Overall, the principle behind MIFs is an eigenvalue or singular 

value decomposition analysis of the FRF-Matrix. A few different MIFs exist and in 

this chapter the two commonly used will be examined. Different versions of MIF 

employ different formulations leading either to eigenvalue decomposition or 

singular value decomposition (SVD). However, both are closely related since the 

singular values of a rectangular Matrix [A] are the square root of the eigenvalues 

of a square matrix [A]H[A]. 

Possibly, the most widely used MIF is the Complex Mode Indicator 

Function (CMIF). It is defined as a SVD of the FRF-matrix [H(ω)] [2]: 

 

 !(!) !×! = !(!) !×! Σ(ω) !×! !(!) !×!
!  (2.1. 

 !"#$(!) !×! = Σ(ω) !×!
! Σ(ω) !×! (2.2. 

 

The FRF-matrix is decomposed into a matrix of left singular values [U] and 

right singular values [V] as well as a rectangular matrix of singular values [Σ], all 

of which are frequency dependent. The mode indicator values are provided by 

the squares of the singular values and usually plotted on a logarithmic scale. As 
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Figure 2 shows, natural frequencies are indicated by large values of the first 

CMIF (peaks), and multiple modes can be detected by use of second and third 

order CMIF.  

 
Figure 2: Complex Mode Indicator Function (CMIF) 

 

In case of a multiple mode, the second or even third MIF would show a 

peak at the same frequency. Additionally, the left singular vector !(!!)  

provides an approximation of mode shape for each frequency ωr and the right 

singular vector !(!!)  provides an approximation of force patterns. 

The other common MIF is the Multivariate Mode Indicator Function 

(MMIF). This visualization is essentially an eigenvalue decomposition of the FRF-

matrix and solves the problem in equation (2.3). 

 

 ! ! !
! ! ! + ! !

! ! ! ! = ! !
! ! ! !  (2.3. 

 

The FRF-matrix has been split up into real [HR] and imaginary [HI] parts. 

The solution to this problem is found by identifying the smallest eigenvalue λmin  

and corresponding force-eigenvector !!"#  . Plotting the solution results in a 
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graph similar to Figure 3. It can be observed that the MMIF identifies natural 

frequencies by minima in the graph. 

 
Figure 3: Multivariate Mode Indicator Function (MMIF) 

 

MIFs are very helpful for estimating natural frequencies and validating 

acquired data. In connection with parameter extraction techniques, described in 

the next section, they truly become powerful tools. 

B. PARAMETER EXTRACTION 

One purpose of modal analysis is to extract the modal parameters of a 

given structure in order to generate the mode shapes and possibly correlating the 

results to a previously run simulation. Generally speaking, the analyst can 

choose between single degree of freedom (SDOF) methods and multi degree of 

freedom (MDOF) methods, however, the test structure more or less dictates 

which method to use in order to achieve reasonable results. In this section, 

several SDOF and MDOF methods will be presented and their strength and 
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weaknesses will be outlined. This serves the purpose to allow better assessment 

of the results obtained by the modal analysis described in the following chapter. 

1. SDOF Modal Analysis Methods 

The SDOF-approach has been used since the early days of modal testing. 

Only in recent times has it been replaced by the more globally working MDOF 

methods, although even today the SDOF-approach offers some advantages and 

should not be regarded as outdated. In addition it should be noted that the title of 

these methods do not refer to the actual degrees of freedom of the tested 

structure, but rather that only one resonance is considered at a time. Naturally, 

this implies a limitation of the SDOF methods, the major one being that its 

accuracy decreases significantly for closely spaced modes. Moreover, this 

method is quite a time-consuming task and requires a great amount of user 

interaction. Despite its limitations, this method proved to be valuable especially 

as a preliminary analysis for quick estimations of the structure’s behavior. Ewins 

even states, “that no large-scale modal test should be permitted to proceed until 

some preliminary SDOF analyses have been performed” [2]. 

As we have already seen, SDOF methods rely on the fact that a single 

mode dominates the behavior of the structure in the vicinity of a resonance. 

Therefore, after [2], we can simplify the algebraic expression of receptance 

αjk(ω): 

 !!"(!) =
!!"!

!!! − !! + !!!!!!

!

!!!

 (2.4. 

First, it is rewritten as 

 

 !!" ! =
!!"!

!!! − !! + !!!!!!
+

!!!!

!!! − !! + !!!!!!

!

!!!
!!

 (2.5. 
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Now, considering the assumption that in the vicinity of the natural 

frequency of mode r, the second term becomes independent of frequency ω and 

thus the sum is simplified to the modal constant rBjk. The term for receptance 

may now be simplified as: 

 

 !!" ! !≃!! ≅
!!"!

!!! − !! + !!!!!!
+ !!"!  (2.6. 

This simplification, however, does not diminish the importance of the other 

existing modes, but rather simplifies their effect to a constant value, which is 

easier to deal with. In fact, the other modes often do have a significant effect. 

a) Peak-Picking Method 

One of the most straightforward methods is the so-called ‘peak-picking’ 

method. This method assumes any effect from other modes can be neglected 

and that the total response is due to the local mode. Naturally, this method works 

reasonably well for structures that exhibit well-separated modes.  

[2] describes the method as follows: The first step in ‘peak-picking’ is to 

detect the peaks on the FRF plot. One maximum is then taken as natural 

frequency ωr of that mode. Next, the corresponding value on the ordinate |Ĥ| is 

noted. Following, the ‘half-power points’ are determined as the corresponding 

frequencies to !
!
 , which are referred to as ωb and ωa , while !! < !! < !!. 

Subsequently, the damping is estimated from formula (2.7). 

 

 
!! =

!!! − !!!

2!!!
= 2!! 

(2.7) 

 

Last, the modal constant can be determined by 
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 !! = ! !!!!! (2.8) 

 

It is obvious that this method relies heavily on the accuracy of the 

maximum FRF level, however, these measurements usually do not provide great 

accuracy, since most measurement errors occur in the vicinity of a resonance. 

Furthermore, only real modal constants can be estimated by this method. The 

other primary limitation is that the single-mode assumption is not strictly correct. 

Even if the modes are well separated, the neighboring modes have a significant 

influence on the response of the mode in question.  

b) Circle-Fit Method 

The circle-fit method uses the Nyquist plot of the frequency response data. 

For detailed description of the Nyquist plot the reader is referred to chapter 2 in 

[2]. In summary, the Nyquist plot produces circle-like curves, which ideally, with 

the appropriate parameters would create an exact circle. Depending on the 

damping model (viscous or structural) the formulas differ, however the procedure 

stays the same. In this case the structural model is chosen and thus we will be 

using the receptance form of FRF.  

Since the only effect of the modal constant rAjk is to scale the size of the 

circle, the basic function for the receptance plot can be used: 

 

 ! =
1

!!! 1− !
!!

!
+ !!!

 (2.9) 

 

In the complex plane, equation (2.9) produces a plot shown in Figure 4. 
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Figure 4: Nyquist plot of FRF 

 

After some algebra, we can obtain the following expression, the reciprocal 

of which is the rate of sweep of the locus around the circle. 

 

 !!!

!Θ =
−!!!!! 1− !

!!
! !

2!!!
 (2.10) 

  

Equation (2.10) reaches the maximum value when = !! , which can be 

shown by further differentiation. In this case the damping can be calculated using 

equation (2.10). Another technique to acquire the damping is by using two 

specific points on the circle ωb and ωa , while !! < !! < !!. The damping 

estimates can be obtained from formula (2.11) 

 

 
!! =

!!! − !!!

!!! !"# Θ!
2 + !"# Θ!

2

 
(2.11) 
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The procedure itself consists of five steps. During the first step, points are 

selected for the analysis, either automatically or by the operator. Care should be 

taken not to choose points that are influenced by other modes and, ideally, the 

selection should encompass 270° of the circle. Furthermore, the range should 

not be limited excessively since inaccuracies of the measurements would 

become more pronounced. In the end [2] recommends to pick at least six points. 

The second step consists of finding a circle-fit for the chosen points. This 

is done by means of least-squares deviation. After the specification of the center 

and radius, a quality factor is determined, which derives from the mean square 

deviation of the selected points from the circle. Generally, an error of 1-2% is 

acceptable.  

Now the natural frequency is located in the third step and the correlating 

damping is obtained. The natural frequency is computed numerically by 

practically constructing lines from the center of the circle to a succession of 

points around the resonance curve. The angles between those lines are noted 

and the rate of sweep is then estimated. From this rate the natural frequency can 

be identified. 

Step 4 is taken to verify and refine the damping estimates. A set of 

damping estimates is calculated using equation (2.11). Now, either a mean value 

is computed and taken as the damping for this mode or the values can be 

examined individually. Ideally, the damping should be the same, however a 

deviation of 4-5% represents a good analysis. To obtain the modal constant we 

can now use equation (2.6). 

c) Residual Terms 

Concluding the SDOF-section, it is essential to introduce the concept of 

residual terms. Since it is usually necessary to limit the range of interest in modal 

analysis, the residual terms take into account the modes out of range. 

When applying the SDOF curve-fit for a series of succeeding modes, a 

problem usually occurs when working with the extracted parameters. After the 
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identification of the modes, a construction of a ‘theoretical’ curve that represents 

these modes is often desired. However, the regenerated curve is usually a bad 

fit, when compared to actual measurements, and this is due to the effect of out-

of-bound modes. Therefore, it is necessary to take modes out of range into 

consideration. 

For a regenerated FRF curve for the modal series from mode m1 to m2 we 

use an equation of the type 

 

 !!" ! =
!!"!

!!! − !! + !!!!!!

!!

!!!!

 (2.12) 

 

The deviation can be seen clearly, when we look at the equation for the 

measured data, which accounts for the first mode and the highest mode N, when 

it is rewritten as equation (2.14). 

 

 !!" ! =
!!"!

!!! − !! + !!!!!!

!

!!!

 (2.13) 

 !!" ! = +
!!!!

!!!

+
!!

!!!!

!!"!

!!! − !! + !!!!!!

!

!!!!!!

 (2.14) 

 

The first term represents the lower frequencies and approximates to a 

mass-like behavior. The second term relates to the actual modes in the range of 

interest, and the third term relates to the higher frequencies, which approximates 

to a stiffness effect. Thus, equation (2.14) rewrites as 

 

 !!" ! ≅ −
1

!!!!"!
+

!!"!

!!! − !! + !!!!!!
+

1
!!"!

!!

!!!!

 (2.15) 
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where !!"!  and !!"!  are the residual mass and stiffness for that FRF. 

Naturally, if we extend or limit the range of analysis the residual terms have to be 

recalculated. 

2. MDOF Modal Analysis Methods 

As mentioned earlier, there are some situations for which the SDOF 

assumption is inappropriate. This is the case when the structure is extremely 

lightly damped or when its modes are closely spaced. The solution is to extract 

several modes’ parameters simultaneously in one process. Naturally, this 

process is a more complex one and requires an elaborate mathematical 

understanding. For the detailed mathematical derivation, the reader is referred to 

chapter 4 of [2]. Before continuing to the two MDOF techniques that shall be 

discussed, the reader is advised that the idea of residual terms also applies to 

MDOF methods. 

a) Complex Exponential Method 

The complex exponential method as implemented in NX I-deas, is a 

MDOF technique that is based on a curve-fitting process in the time-domain. Its 

main advantage is that it does not rely on estimates of modal parameters as 

starting points. However, it is limited to the use of only one reference location. 

For a consideration of multiple references at once, the polyreference method, 

which evolved from the complex exponential technique, should be employed [3]. 

 

In the first step, we obtain the Impulse Response Function (IRF) via an 

Inverse Fourier Transform of the receptance FRF, which leads to an exponential 

expression of the IRF: 

 ℎ!" ! = !!!"!!!!
!!

!!!

       ;     !! = −!!!! + !!!!  (2.16) 

 

For simplification purposes, we shall change the following notation: 



 14 

 

 !!!" = !!       ;       !!!!! = !! (2.17) 

 

Note that since the measured FRF usually a discrete function of equally 

spaced intervals of frequencies, the IRF also becomes a discrete function of 

equally spaced time intervals (Δ! = 1 Δ!). Following this notation, we receive 

this system of equations for q samples: 

 

 

ℎ! = !! + !! +⋯+ !!!
ℎ! = !!!! + !!!! +⋯+ !!!!!!
ℎ! =
⋮

ℎ! =

!!!!! + !!!!! +⋯+ !!!! !!!
⋮

!!
!!! + !!

!!! +⋯+ !!!
! !!!

 (2.18) 

 

Now let the number of samples q exceed 4N and we use equation (2.18) 

to set up an eigenvalue problem, the solution to which will be the complex natural 

frequencies contained in Vr. In order to obtain this solution we introduce 

coefficient βi, which eventually leads to the following polynomial: 

 

 !! + !!! + !!!! +⋯+ !!!! = 0 (2.19) 

 

We shall now seek the values of the β coefficients to determine the roots 

of (2.19) V1,  V2,  …,  Vq which represent the natural frequencies. In order to do so 

we let ! ≡ 2! and thus the problem 

 

 !!!!! = 0      !"#  ! = 1,… ,2!
!!

!!!

 (2.20) 

 

results in equation (2.21) to be solved. 

 



 15 

 ℎ! ℎ! ℎ! … ℎ!!!!
!!
!!
⋮

= −ℎ!! (2.21) 

 

This process is repeated with a different set of IRF data, always 

overlapping for all but one. Thus, the second problem would look like: 

 

 ℎ! ℎ! ℎ! … ℎ!!
!!
!!
⋮

= −ℎ!!!! (2.22) 

 

Eventually, this results in a set of 2N linear equations, which can then be 

solved for β: 

 ! = − ℎ !! ℎ  (2.23) 

 

After having obtained the coefficient β we can now determine the values 

V1,  V2,…,  V2N (2.19) and thus are able to determine the natural frequencies using 

(2.17). Furthermore, we may determine the modal constants using equation 

(2.24). 

 ! ! = ℎ  (2.24) 

 

The complex exponential method is used in the following manner. First, an 

estimate for the number of degrees of freedom is made and based upon this the 

analysis mentioned above is performed. Subsequently, the extracted modal 

parameters are used to create a regenerated FRF, which in turn is compared to 

the original measurements. Now, the error between the artificial and the real 

curve is computed. This process is then repeated several times, each time using 

a different initial estimate of the degrees of freedom. Eventually, as the estimate 

of the DOFs approaches the value of the actual DOFs, the error should diminish. 

Thus, the modal parameters can be plotted in a so-called stability diagram as 

Figure 5 shows. If the initial DOFs estimate is higher than the actual DOFs, 

computational modes are created. Generally, they can be identified by their 
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unusually high damping or small modal constants. The stability diagram plots the 

results of each iteration (right-hand side axis) and assigns different symbols for 

different kind of stabilization: 

• stable	
  mode	
  (red	
  diamond)	
  

• vector	
  stable	
  (blue	
  triangle)	
  

• frequency	
  stable	
  (green	
  X)	
  

• damping	
  stable	
  (pink	
  asterisk)	
  

• new	
  mode	
  (cyan	
  cross)	
  

• computational	
  mode	
  (usually	
  filtered,	
  because	
  undesirable)	
  

 
Figure 5: Example of Stability Diagram 

 

b) Rational Fraction Polynomial Method 

The most widely used MDOF frequency domain method is the rational 

fraction polynomial method (RFP). It is an advancement of the non-linear least-

squares method and in contrast to its parent, method uses a rational fraction FRF 

expression. The advantage the RFP method has over its predecessor is, that the 

curve-fitting problem can be formulated as a set of linear equations and thus 

allows for a matrix solution.  
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Theoretically, this set of linear equations allows for the solution of every 

unknown parameter. However, the RFP method presumes the order of the mode 

to be known, when it usually is not and is one of the parameters that are to be 

extracted. Therefore, an iteration process is implemented using different values 

for the mode order and comparing the results. This leads to the calculation of 

genuine modes as well as so called computational or fictional modes. In principle 

a mode that repeats after several iterations and is persistent, is most likely a 

genuine mode. Modes that vary excessively and occur sporadically throughout 

the iteration process are most likely computational modes. Usually, the results of 

the iteration process are plotted in a stability diagram (Figure 5) and the analyst 

can choose the modes that appear to be the best fit. Modern analysis software 

also provides an automatic selection feature. It is at this point, that the MIF come 

into action as a powerful tool. In order to help the operator with his/her selection, 

the stability diagram can be overlaid with a MIF, so that the modes can be 

identified more easily (Figure 6). 

 

 
Figure 6: Example of Stability Diagram MIF Overlay 

This advanced technique also allows to choose between global solution 

and local solution. Essentially, the local solution is advisable for non-consistent 
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data, which may be caused due to mass-loading. In general, for a complex 

structure one may have an inadequate number of accelerometers and is required 

to do several measuring cycles during which the accelerometers are moved, 

while the force input remains the same Thus, every desired node is measured in 

one set of data. However, the change of mass-distribution will cause 

discrepancies in the different cycles’ data, resulting in a shift of resonance 

frequency. Figure 7 illustrates this effect. Clearly, the resonance appears to be in 

a range of frequencies, rather than a single one. The local solution feature allows 

for compensation of this effect by calculating a mean value in a specified range. 

This mean value is then used for the parameter extraction algorithm. 

 

 
 

Figure 7: Example of Frequency Shift 

 

 

 

 

[m/Ns2] 

[Hz] 
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C. CORRELATING TEST RESULTS AND SIMULATION RESULTS 

 

In this section, two slightly different concepts shall be discussed. First, the 

frequency response assurance criterion (FRAC) is explained, followed by the 

introduction of the modal assurance criterion (MAC). 

1. Frequency Response Assurance Criterion 

The frequency response assurance criterion compares two frequency 

response functions and assigns a value between zero and one, with one 

representing complete correlation. It is often used for methods with high user 

interaction such RFP where the user has to choose a mode on the stability 

diagram. In this case, FRAC can be used to correlate the regenerated FRF with 

measurement FRF in order to determine whether the parameters extracted 

represent a good fit. Ideally, the synthesized and measured FRF should be 

linearly related. Furthermore, this feature can be used in any case for validation 

of the parameter estimation method. [4] gives the equation this technique uses to 

calculate an assurance value: 

 !"#$!" =
!!"(!)!!"∗ (!)

!!
!!!!

!

!!"(!)!!"∗ (!)
!!
!!!! !!"(!)!!"∗ (!)

!!
!!!!

 (2.25) 

 

2. Modal Assurance Criterion 

After the analysis of the experimentally obtained data, the results can be 

used to validate a finite element model. For that purpose the modal assurance 

criterion has been developed. Although the mode shapes of the simulation and 

the shapes of the experiment may differ by number, they can still represent the 

same mode, and thus validate the simulation. For further details on MAC, the 

reader is referred to [3] and [4]. 

The modal assurance criterion is a scalar value that can range between 

zero and one, with a value close to zero representing low correlation and a value 
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near to one indicating a high correlation. The latter case means that the two 

mode shapes represent the same motion but differ by a complex modal scale 

factor (MSF). Let m be the total number of modes identified in the bandwidth of 

interest, then the MSF is determined by 

 

 !"# =
!! ! !!
!! ! !!

 (2.26) 

 

With !!being an m-dimensional vector representing mode shape 1 and !! 

being an m-dimensional vector representing mode shape 2. In this notation mode 

shape 1 is the reference shape to which shape 2 is compared. 

The modal assurance criterion is calculated using the expression 

 

 !"# =
!!(!) ∗ !!(!)!

!!!
!

!!(!) ∗ !!(!)!
!!! !!(!) ∗ !!(!)!

!!!
 (2.27) 

 

There are five reasons why the MAC may take a value near zero: 

• the	
  system	
  is	
  non-­‐stationary	
  because	
  of	
  changes	
  of	
  mass,	
  stiffness	
  and	
  damping	
  

during	
  testing	
  

• the	
  system	
  is	
  non-­‐linear	
  

• there	
  is	
  noise	
  in	
  the	
  reference	
  mode	
  shape	
  

• the	
  chosen	
  parameter	
  extraction	
  technique	
  is	
  invalid	
  

• the	
  mode	
  shapes	
  are	
  linearly	
  independent	
  

If the first four reasons can be eliminated MAC can be used for an 

orthogonality check. Although it does not consider mass or stiffness matrices, 

MAC can provide an approximation for orthogonality. 

The MAC takes a value close to one if: 

• the	
  number	
  of	
  DOFs	
  is	
  insufficient	
  to	
  distinguish	
  independent	
  mode	
  shapes	
  

• unmeasured	
  forces	
  to	
  the	
  system	
  influence	
  mode	
  shapes	
  

• the	
  mode	
  shapes	
  consist	
  of	
  coherent	
  noise	
  



 21 

• the	
  shapes	
  represent	
  the	
  same	
  motion	
  differing	
  only	
  by	
  modal	
  scalar	
  factor	
  

If the first three reasons can be eliminated MAC can be used to identify 

correlating mode shapes. There are different ways to display the information 

MAC provides. In its simplest form a table is created arranging each mode of the 

simulation against each mode of the experimental analysis. Ideally, the diagonal 

would show values of one, while the other fields would be zero. An example is 

given in Table 1. This concept can also be displayed visually, either in a 2D or 3D 

plot. Different colors represent different values of MAC, as can be seen in Figure 

8. 

 

[Hz]	
   137.885	
   214.971	
   353.328	
   374.926	
   474.509	
   494.683	
  
135.567	
   0.166	
   0.017	
   0.003	
   0.001	
   0.007	
   0.161	
  
146.986	
   0.753	
   0.001	
   0.006	
   0.044	
   0.192	
   0.006	
  
210.486	
   0.008	
   0.921	
   0.005	
   0.028	
   0.002	
   0.024	
  
337.545	
   0.002	
   0.048	
   0.745	
   0.658	
   0.001	
   0.004	
  
374.909	
   0.001	
   0.000	
   0.146	
   0.127	
   0.027	
   0.008	
  
492.755	
   0.167	
   0.005	
   0.020	
   0.002	
   0.793	
   0.003	
  
512.627	
   0.068	
   0.011	
   0.008	
   0.004	
   0.010	
   0.767	
  

 

Table 1: Example of Numerical Presentation of MAC 

 

 
Figure 8: Example of 3D and 2D Presentation of MAC 
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III. MODAL TESTING OF NPSAT1 

This chapter describes the process of the modal survey of NPSAT1. First 

we will examine the test-setup and the reasons for the properties chosen. 

Following a brief outline of the test process itself, emphasis will be placed on a 

more detailed description of the analysis process. 

A. TEST SETUP 

The purpose of this thesis is to validate a preliminary run of a finite 

element model of NPSAT1. There are some requirements associated with this 

task. For further detail on the implications of the choices made in the following 

the reader is referred to the preceding Studienarbeit [5].  

First, the boundary conditions under which the structure is to be tested are 

already determined by the FEM. In this case the choice was made for a freely 

supported structure. A framework and rubber cords allow for this condition. 

Furthermore, the three-dimensional structure demands three degrees of freedom 

being measured at each node. Additionally, the locations of the transducers have 

to be chosen and their coordinates implemented into the computer model. Since 

there are only 8 tri-axial transducers available, but 168 nodes to be measured, 

the testing has to be split into several sessions. Because of this and the 

associated repositioning of the accelerometers, the choice is made to use wax as 

an adhesive with the obvious advantage, that the transducers can be loosened 

easily. In addition, impact excitation via hammer is chosen because it offers the 

most efficient test setup. Using a shaker, for instance, would require a much 

more complex setup in order to support the 82 kg satellite structure. Furthermore 

three different locations of excitation are chosen (nodes 123, 159, 169) each in a 

different direction resulting in the structure being excited in all three dimensions. 

Thus we can assume to excite every mode in the bandwidth of interest. The final 

test setup is shown in Figure 9 as well as the computer model. 
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Figure 9: Test Setup Free Boundary Conditions and Computer Model 

 
Figure 10: Fixed Accelerometers 

 

B. MEASUREMENTS 

During the acquisition of data, the operator has to consider several 

important aspects. First of all, the bandwidth of interest is determined. Since the 

lower frequencies represent the highest mass participation, a range from 0 -

 400 Hz is chosen. Another key factor is the adjustment of the sensitivity of the 

accelerometers. It is essential not to cause an overload because this leads to 
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loss of information. However, it is not advisable to have too low a sensitivity 

because that introduces noise into the data. Therefore, before starting a 

measurement cycle, the sensitivity should be adjusted. In addition, the use of 

wax as an adhesive may cause the accelerometers to loosen during data 

acquisition. Especially for the measurements taken inside the satellite, this may 

not be obvious during the data acquisition. Thus, it is necessary to carefully 

check if the accelerometers are still attached after the measurement cycle. It is 

advisable to do a preliminary data check after each data acquisition in order to 

detect any abnormalities. This possibly saves time during the analysis process if 

any cycle has to be repeated or the desired boundary conditions have not been 

achieved. 

C. MODAL ANALYSIS 

During this section we will analyze the obtained data according to the 

different methods mentioned in chapter 2. We will follow the path from the easy 

and crude SDOF techniques to the more sophisticated MDOF methods. During 

the analysis two programs were used. For the SDOF-analysis as well as for the 

acquisition of data, the software ‘NX I-deas’ developed by Siemens was used. 

For the MDOF-analysis as well as the correlation tasks, ‘PulseReflex’ developed 

by Brüel & Kjær was used. 

1. Peak-Picking Method on NPSAT1 Data 

For initial parameter estimation, we will use the peak-picking method in 

order to get an estimate of the modes present. This method represents a fairly 

simple technique requiring minimal operator interaction. However, some 

limitations may apply because of the rather complex structure.  

The first step is to pick the peaks on an FRF graph. During this analysis, 

we will emphasize the structural damping and thus use FRF data from the 

responses. When viewing the FRF it is already apparent, that the SDOF-

assumption is not fully valid, because of the closely spaced peaks around the 90 
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Hz and 260 Hz area (Figure 11). Furthermore, the range for the analysis is set to 

70 Hz – 400 Hz, because of the noise and rigid body modes that appear in the 

lower range. 

 
Figure 11: FRF Ref: 123X-; Res: 11X+ 

After having chosen the frequencies of the peaks, I-deas calculates a 

curve-fit. It is also advisable to include residual terms on both ends to 

compensate for the influence of out-of-band modes. Comparing the curve-fit 

suggestions to the original data, it is obvious that this method does not provide 

an accurate estimate for the modal parameters. However, we obtained up to 

eleven modes using the Z-direction of excitation and we provide an estimate of 

the number of modes to look for using methods that are more sophisticated. 

Table 2 shows the results obtained with the peak-pick technique for all three 

directions of excitation. Note, that the modes found are already correlated to the 

final mode count, thus it can be seen which modes failed to be detected by this 

method. 
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Mode	
   SDOF	
  PeakPick	
  X	
   SDOF	
  PeakPick	
  Y	
   SDOF	
  PeakPick	
  Z	
  
	
  	
   f	
  [Hz]	
   d	
  [%]	
   f	
  [Hz]	
   d	
  [%]	
   f	
  [Hz]	
   d	
  [%]	
  

1	
   84.802	
   0.087	
   83.473	
   0.126	
   82.688	
   0.152	
  
2	
   92.882	
   0.009	
   96.336	
   0.512	
   92.464	
   0.176	
  
3	
   	
  	
   	
  	
   127.722	
   0.181	
   127.460	
   0.252	
  
4	
   184.659	
   0.013	
   	
  	
   	
  	
   183.594	
   1.251	
  
5	
   	
  	
   	
  	
   	
  	
   	
  	
   183.920	
   0.661	
  
6	
   	
  	
   	
  	
   	
  	
   	
  	
   204.179	
   1.615	
  
7	
   	
  	
   	
  	
   	
  	
   	
  	
   212.894	
   0.381	
  
8	
   228.096	
   0.504	
   228.371	
   0.416	
   	
  	
   	
  	
  
9	
   235.336	
   0.248	
   236.104	
   0.266	
   	
  	
   	
  	
  

10	
   264.948	
   0.009	
   262.708	
   0.101	
   265.755	
   0.671	
  
11	
   289.624	
   0.251	
   278.168	
   0.244	
   277.711	
   0.410	
  
12	
   	
  	
   	
  	
   320.008	
   0.039	
   319.179	
   0.154	
  
13	
   	
  	
   	
  	
   	
  	
   	
  	
   369.360	
   0.286	
  
14	
   373.363	
   0.004	
   372.541	
   0.268	
   	
  	
   	
  	
  

 

Table 2: Mode Table Using Peak-Picking Method 

2. Circle Fit Analysis of NPSAT1 

First, the operator chooses a response FRF from the measured data, 

which appears to represent the modes rather clearly. Afterwards, the first 

frequency peak is picked with the peak-picking tool. Now, the residual terms and 

the single curve fit are calculated. For the calculation of the curve-fit, a Nyquist 

plot is used (similar to Figure 12) and the tolerance settings can be adjusted, to 

achieve a high correlation. As mentioned in the previous chapter, a correlation of 

98% provides a very good curve-fit, as long as at least six points are used. 
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Figure 12: Circle Fit Nyquist Plot Response 11X+ Reference 123X- 

 

 
Figure 13: Circle Fit Single Mode Curve Fit 
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The result is a curve-fit for a single mode (Figure 13) which can be 

adjusted further if needed. From this curve-fit the software calculates the mode 

shapes for each response point, resulting in a 3D animation (Figure 14) of the 

local movements. The analyst now proceeds to the next mode and repeats this 

process. In the end, this process was repeated for all three references and the 

results are listed in Table 3. 

 

 

 
Figure 14: 3D Animation of Mode 14 Using Circle Fit Method 

 

 

 

 

 

 

 

x  

z  

y  



 30 

 

Mode	
   CircleFit	
  X	
   CircleFit	
  Y	
   CircleFit	
  Z	
  
	
  	
   f	
  [Hz]	
   d	
  [%]	
   f	
  [Hz]	
   d	
  [%]	
   f	
  [Hz]	
   d	
  [%]	
  

1	
   83.558	
   0.026	
   84.527	
   0.019	
   86.216	
   0.246	
  
2	
   92.970	
   0.805	
   94.271	
   0.689	
   90.246	
   0.609	
  
3	
   	
  	
   	
  	
   	
  	
   	
  	
   122.140	
   1.020	
  
4	
   184.712	
   0.327	
   185.116	
   0.187	
   180.012	
   1.389	
  
5	
   	
  	
   	
  	
   204.020	
   1.470	
   202.143	
   1.911	
  
6	
   	
  	
   	
  	
   	
  	
   	
  	
   213.821	
   0.522	
  
7	
   227.786	
   0.433	
   229.006	
   0.116	
   	
  	
   	
  	
  
8	
   233.787	
   0.722	
   233.811	
   0.900	
   	
  	
   	
  	
  
9	
   	
  	
   	
  	
   	
  	
   	
  	
   261.742	
   0.620	
  

10	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
11	
   	
  	
   	
  	
   	
  	
   	
  	
   277.457	
   1.143	
  
12	
   	
  	
   	
  	
   319.740	
   0.443	
   314.065	
   1.203	
  
13	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
  
14	
   383.873	
   0.303	
   373.322	
   0.057	
   368.994	
   1.333	
  

 

Table 3: Circle-Fit Results 

 

3. Complex Exponential Analysis of NPSAT1 in Frequency 
Domain 

After having gained an overview of possible modes, we can now try to 

achieve the best curve-fit and thus the most accurate modal parameters. 

Therefore, MDOF techniques represent a more promising approach.  

The first step using the complex exponential method is to calculate the 

MIF for one set of data. Then, the algorithm can be refined choosing different 

options. One very important option is the number of iterations to be used 

calculating the stability diagram. In this case, a number of 50 iterations seems 

sufficient to distinguish the modes. 

As a result, a stability diagram is provided, overlaid with the complex 

mode indicator function and one measurement FRF for visual assurance. Figure 

15 shows the stability diagram for the Z-reference. The circles represent the 
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modes picked by the operator. The operator chooses the points according to 

their influence on the curve-fit and their stabilization. This means that stable 

modes are preferred (indicated by a red diamond).  

 

 
Figure 15: Complex Exponential Mode Selection Z-Reference 

 

Furthermore, the operator constantly watches the FRAC value for the 

measurement FRF and regenerated FRF in order to achieve the highest value 

possible. Using the complex exponential technique, FRAC values up to 92% can 

be achieved. However, FRAC values as low as 20% still exist. The extracted 

mode parameters are shown in Table 4. 
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Mode	
   PolyRef	
  Freq	
  X	
   PolyRef	
  Freq	
  Y	
   PolyRef	
  Freq	
  Z	
  
	
  	
   f	
  [Hz]	
   d	
  [%]	
   f	
  [Hz]	
   d	
  [%]	
   f	
  [Hz]	
   d	
  [%]	
  

1	
   85.813	
   0.058	
   86.185	
   0.031	
   86.917	
   0.011	
  
2	
   95.449	
   0.214	
   93.983	
   0.219	
   93.100	
   0.061	
  
3	
   120.919	
   1.779	
   127.825	
   0.302	
   128.938	
   0.258	
  
4	
   184.163	
   0.595	
   185.624	
   0.271	
   179.375	
   1.388	
  
5	
   	
  	
   	
  	
   	
  	
   	
  	
   183.950	
   0.181	
  
6	
   203.764	
   2.317	
   205.561	
   3.641	
   207.777	
   2.342	
  
7	
   214.232	
   0.466	
   214.887	
   0.405	
   213.181	
   0.937	
  
8	
   228.200	
   0.795	
   229.378	
   0.870	
   	
  	
   	
  	
  
9	
   237.687	
   0.256	
   235.346	
   0.954	
   	
  	
   	
  	
  

10	
   262.839	
   0.300	
   262.652	
   0.502	
   262.087	
   0.700	
  
11	
   276.964	
   0.417	
   277.941	
   0.610	
   279.128	
   0.677	
  
12	
   	
  	
   	
  	
   282.654	
   0.313	
   318.550	
   0.276	
  
13	
   	
  	
   	
  	
   319.188	
   0.243	
   	
  	
   	
  	
  
14	
   372.550	
   1.002	
   371.080	
   0.760	
   370.635	
   0.204	
  

 

Table 4: Modal Parameters Using Complex Exponential Technique 

 

4. Rational Fraction Polynomial Analysis of NPSAT1 

In the end, we will use the most sophisticated method available for modal 

analysis, the rational fraction polynomial method. First, we will use the global 

solution, after which we will move on to the local solution to reduce data 

inconsistencies. 

The operator’s procedure using the RFP method is very similar to the 

complex exponential method. First, the CMIF is calculated and the options of the 

algorithm are set. In this case we require 55 iterations to identify the lowest mode 

around 85 Hz. Following the settings, the stability diagram is calculated and the 

operator can start the curve-fitting process. An example of the stability diagram is 

shown in Figure 16. The modes identified using the RFP global method allow for 

a FRAC value of up to 95%. Furthermore, the lowest FRAC values are lifted to 

around 30%. Thus, we achieved an improvement of accuracy. Table 5 shows the 

results of the rational fraction global solution. 
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Figure 16: Stability Diagram RFP Global X-Reference 

 

Mode	
   RFP	
  glob	
  X	
   RFP	
  glob	
  Y	
   RFP	
  glob	
  Z	
  
	
  	
   f	
  [Hz]	
   d	
  [%]	
   f	
  [Hz]	
   d	
  [%]	
   f	
  [Hz]	
   d	
  [%]	
  

1	
   85.482	
   0.158	
   85.610	
   0.085	
   85.843	
   0.051	
  
2	
   94.767	
   0.001	
   95.465	
   0.105	
   95.113	
   0.509	
  
3	
   127.697	
   0.330	
   127.372	
   0.627	
   127.064	
   0.424	
  
4	
   183.894	
   0.509	
   184.161	
   0.750	
   182.151	
   0.991	
  
5	
   190.631	
   0.137	
   	
  	
   	
  	
   	
  	
   	
  	
  
6	
   204.541	
   0.823	
   202.224	
   1.494	
   201.492	
   0.969	
  
7	
   213.809	
   0.832	
   213.728	
   0.502	
   212.551	
   1.255	
  
8	
   229.179	
   0.538	
   229.337	
   0.755	
   231.372	
   0.841	
  
9	
   236.096	
   0.520	
   236.922	
   0.525	
   261.568	
   0.707	
  

10	
   263.025	
   0.478	
   263.035	
   0.416	
   267.525	
   0.254	
  
11	
   271.276	
   0.293	
   282.032	
   0.318	
   280.761	
   0.285	
  
12	
   321.021	
   0.209	
   319.263	
   0.217	
   318.124	
   0.310	
  
13	
   368.888	
   1.458	
   	
  	
   	
  	
   	
  	
   	
  	
  
14	
   371.472	
   0.465	
   370.760	
   0.768	
   369.992	
   0.518	
  

 

Table 5: Mode Table using RFP Global Solution 

However, when scrutinizing the data, it is apparent that frequency shifts 

occur during the different measurement cycles. This is most likely caused by 
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mass loading effects. Mass loading occurs when the accelerometers are moved 

during the measurement cycles. This results in a slightly different mass 

distribution and thus results in a frequency shift of the resonance. 

The local solution offers compensation for this effect. Essentially, the 

algorithm calculates the modes for each measured FRF and plots it in a cluster 

diagram, which is again overlaid with the MIF for visual aid (Figure 17). The 

operator can now use an ‘area’-tool to envelop a selection of modes and 

calculate the midpoint of that cluster. The extracted parameters are thus a 

compromise of all available modes. Furthermore, obvious measurement errors 

can be left out so they do not influence the result. This method proves to be the 

most accurate, as it finds the highest number of modes and allows for a FRAC 

value of up to 99%.The average FRAC value is 83.6%. The results are given in 

Table 6. 

 

 
Figure 17: Cluster Diagram RFP Local X-Reference 
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Mode	
   RFP	
  loc	
  X	
   RFP	
  loc	
  Y	
   RFP	
  loc	
  Z	
  
	
  	
   f	
  [Hz]	
   d	
  [%]	
   f	
  [Hz]	
   d	
  [%]	
   f	
  [Hz]	
   d	
  [%]	
  

1	
   85.601	
   0.165	
   85.668	
   0.207	
   85.365	
   0.256	
  
2	
   94.726	
   0.460	
   95.242	
   0.370	
   93.991	
   0.376	
  
3	
   127.466	
   0.266	
   127.153	
   0.496	
   127.074	
   0.679	
  
4	
   184.119	
   0.669	
   183.926	
   0.638	
   182.948	
   1.022	
  
5	
   190.219	
   0.805	
   202.852	
   1.192	
   203.248	
   1.705	
  
6	
   202.551	
   1.298	
   216.139	
   0.754	
   215.073	
   0.906	
  
7	
   216.054	
   0.747	
   229.211	
   0.707	
   228.777	
   0.636	
  
8	
   228.635	
   0.714	
   236.354	
   0.483	
   235.075	
   0.540	
  
9	
   235.898	
   0.604	
   263.923	
   0.440	
   	
  	
   	
  	
  

10	
   263.154	
   0.457	
   271.276	
   0.363	
   268.313	
   0.758	
  
11	
   271.251	
   0.404	
   281.032	
   0.370	
   279.633	
   0.443	
  
12	
   280.381	
   0.259	
   318.567	
   0.246	
   317.706	
   0.384	
  
13	
   321.790	
   0.260	
   360.341	
   1.245	
   362.943	
   1.118	
  
14	
   369.463	
   1.054	
   371.804	
   0.814	
   370.116	
   0.787	
  

 

Table 6: Mode Table Using RFP Local Solution 
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IV. CONCLUSION AND OUTLOOK 

The preliminary check of the acquired data offered first validation of the 

test-setup. All acquired FRFs have a clear mass-like behavior in the low 

frequencies only interrupted by the rigid body modes. Therefore, the desired 

boundary conditions have been achieved. However, the high frequency 

asymptotes of the point mobility measurements of both the X and Y direction 

show a stiffness-like behavior (Figure 18). This fact makes it rather difficult for the 

analyst because the modal parameters are dominated by the local effects. Figure 

18 clearly demonstrates the difficulty in identifying the modes. Usually, it is 

advisable in such a case to change the location of excitation, however relocation 

to another point on the outside panels does not promise to achieve any 

improvement. 

 
Figure 18: Point Mobility FRF Ref: 123X- 

During the analysis process, it became apparent that the SDOF-

assumption is not applicable in this instance. However, the results obtained with 

the SDOF methods provided a good estimate of the resonance frequencies and 

helped identify the modes when applying more sophisticated techniques.  

One aspect that the SDOF methods display better than the MDOF 

methods is the influence of excitation on the different mode shapes. Especially 
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the circle fit method showed that certain mode shapes are excited better in one 

direction than the other.  

Since the RFP local solution in X direction offers the best curve-fit, it is 

chosen to correlate to the FEM results in order to validate the model. For this 

task a MAC graph is calculated (Figure 19). As can be seen in the graph the 

mode shapes correlate very badly. Moreover, the first mode calculated by the 

FEM simulation is located at 200.674 Hz which is significantly higher than the 

first mode identified by modal testing (85.601 Hz; RFP local X).  

 

 

 
Figure 19: MAC Simulation vs. RFP local X-Reference 

 
Figure 20: 3D MAC Simulation vs. RFP local X-Reference 
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Therefore, the FEM is considerably stiffer than the actual structure. This 

results from the connections in the model which represent a welded connection 

rather than a connection by screws. As a result, the FEM has to be modified by 

considering the connection conditions of each part. The model has to be more 

flexible for it to reproduce the actual structure of NPSAT1. 

In order to validate the test results, each mode table is correlated to the 

RFP local X-Reference table. Thus, we can determine if the acquired results are 

consistent. First, it is obvious that even the SDOF-methods identify modes that 

are in the same range as the modes found by the other techniques. Furthermore, 

when correlating the results of the MDOF techniques with the RFP local X 

Reference, a clear diagonal trend is apparent. Thus, we can assume that the test 

results are in fact valid. 

In conclusion, the test results appear to be genuine and the test-setup 

provides the demanded boundary conditions. The correlation with the finite 

element model, however, proves to be poor and thus the model has to be 

improved. It is suggested that the model is made more flexible in order to 

reproduce the effects found during the testing. When the FEM has been adapted, 

it can be correlated again with the test results and no additional modal analysis is 

necessary. 
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